|
In statistics, normality tests are used to determine if a data set is well-modeled by a normal distribution and to compute how likely it is for a random variable underlying the data set to be normally distributed. More precisely, the tests are a form of model selection, and can be interpreted several ways, depending on one's interpretations of probability: * In descriptive statistics terms, one measures a goodness of fit of a normal model to the data – if the fit is poor then the data are not well modeled in that respect by a normal distribution, without making a judgment on any underlying variable. * In frequentist statistics statistical hypothesis testing, data are tested against the null hypothesis that it is normally distributed. * In Bayesian statistics, one does not "test normality" per se, but rather computes the likelihood that the data come from a normal distribution with given parameters ''μ'',''σ'' (for all ''μ'',''σ''), and compares that with the likelihood that the data come from other distributions under consideration, most simply using a Bayes factor (giving the relative likelihood of seeing the data given different models), or more finely taking a prior distribution on possible models and parameters and computing a posterior distribution given the computed likelihoods. ==Graphical methods== An informal approach to testing normality is to compare a histogram of the sample data to a normal probability curve. The empirical distribution of the data (the histogram) should be bell-shaped and resemble the normal distribution. This might be difficult to see if the sample is small. In this case one might proceed by regressing the data against the quantiles of a normal distribution with the same mean and variance as the sample. Lack of fit to the regression line suggests a departure from normality.(see Anderson Darling coefficient and minitab) A graphical tool for assessing normality is the normal probability plot, a quantile-quantile plot (QQ plot) of the standardized data against the standard normal distribution. Here the correlation between the sample data and normal quantiles (a measure of the goodness of fit) measures how well the data are modeled by a normal distribution. For normal data the points plotted in the QQ plot should fall approximately on a straight line, indicating high positive correlation. These plots are easy to interpret and also have the benefit that outliers are easily identified. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Normality test」の詳細全文を読む スポンサード リンク
|